
International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

Detection & prevention of SQL injection & Cross -
site scripting attacks using SPWEPTLU

technique
Sayed Yousuf Mahbobi, Amjad Khan, Mattiullah Nadiry,Ahmad Shekib Ghawsi

Abstract— SQL (Structured Query Language) injection is the most common and potentially hazardous attack that allows the attackers to
fully manage the database by injecting or passing different malicious statements to the database engine in order to manipulate the data
irresponsibly. This penetration to the system can cause serious damages such as stealing sensitive information, causing corruption in an
organization or dismantling organization’s operations. On the other hand XSS (Cross Site Scripting) is another type of security vulnerability
that empowers the attackers to place client side scripts into a web pages visited by the users. In this paper we present optimal solution for
detecting and preventing SQL and XSS injection attacks by restricting stored procedures with execute permission only to legitimate users.

The paper is organized as: Part-I is dedicated to the brief introduction of SQL & XSS attacks. In Part-II & Part-III a complete introduction of
SQLIA along with different types of SQL attacks are explained. In Part-IV XSS is described briefly while, in Part-V relevant literature has
been explored. In Part-VI the solution along with implementation are explained in the form of algorithms and flow charts whilst, in the last
part conclusion and future work are illustrated.

Index Terms— SQL, Structured Query Language, XSS, Cross Site Scripting, SQLIA, Structured Query Language Attack.

—————————— ——————————

1 INTRODUCTION

n Modern Times, World Wide Web has shaped the organi-
zation‘s infrastructure and becoming the essential part of
each organization. Therefore, with the advancement and

wide-spread usage of internet and World Wide Web, data-
protection has become a challenging task. Since malicious us-
ers also known as cyber criminals are risen significantly and
performing sophisticated logical attacks to harm the organiza-
tions by exploiting or auditing required information. The most
popular and perilous attacks that are still lurking over the mil-
lions of websites or web applications are SQL & XSS attacks.
In SQL attack, attackers usually distort the parameters of the
SQL statements that are delivered to the backend database in
order to perform the desired or intended malicious operations
such as deleting, auditing and retrieving sensitive information
through injections. XSS is another form of security vulnerabil-
ity that targets the users by enabling them to view the pages
that are affected awkwardly by client side scripts injections.
XSS attacks are utilized for stealing cookies and hijacking ses-
sions in a web application that grant the attackers to bypass
the application rules and take the full control of it. As a result, SQL

injection and XSS attacks target all the applications connected to the

databases and compromise the data security hence, it can completely

damage the organizations assets and resources.

2 DEFINATION OF SQLI

SQL Injection is the interpolation of the SQL statements inject-
ed to the application‘s input boxes which causes severe harms
to the data stored in the database and a major threat to the
application security. Lack of supplying sufficient security in
applications and lack of sufficient programming knowledge
causes attackers to be successful in penetrating to the applica-
tion and performing SQL attacks. In SQL Injection attack, the
attackers append a harmful string input through the applica-
tion‘s entry point or input boxes, which transforms or manipu-
late the original SQL statement to the SQL statement exploita-
ble by the attackers. SQL injection can sabotage the database in
peculiar manners such as unauthorized data manipulation or
even in most severe cases execution of system level commands
that causes denial of services to the application thus, it loses
the system confidentiality and trustworthiness.

3 TYPES OF SQLI

3.1 Tautologies

In tautology-based attacks, attackers append one or more con-
ditional SQL statements into the query in order to make SQL
command assess to true condition such as (2=2) or (‗‘=‘‘). The
most frequent usage of this approach is to bypass authentica-
tion on web pages concluding in access to the database. The
SQL query demonstrated in Fig. 1 shows the tautology SQLIA.

I

————————————————

 Sayed Yousuf Mahbobi graduated from bachelor of computer science de-
partment of Kardan Univeristy, Afghanistan, PH-0093704076468. E-mail:
y.mahbobi@outlook.com

 Amjad Khan is PHD scholar at Abdul Wali Khan University, Pakistan PH-
00923219033960. E-mail: amjad@aup.edu.pk

 Mattiullah Nadiry graduated from bachelor of computer science department
of Kardan Univeristy, Afghanistan, PH-0093766040566. E-mail: mattiul-
lah.nadiry@gmail.com

32

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

Fig1: Tautology attack

3.2 Piggy-backend query

In Piggy-backend query, attackers terminate the original query
statements by using query delimiter, such as ";" and inject ad-
ditional query statements to the end of original query. In this
technique the first query is original whereas the subsequent
queries are injected. Piggy backend query attacks are very dis-
astrous because attackers can append any sort of harmful
statements. The SQL query in the below figure demonstrate
the piggy backend query attack.

Fig2: Piggy-backend attack

3.3 Logically incorrect

Logically Incorrect attack arise by exploitation of handy in-
formation like error messages that comes from the database
for unauthentic query. This erroneous information helps the
attackers to find hole in the system and perform attack. SQL
query mentioned in the below figure describes Logically In-
correct attack.

Fig3: Logically incorrect attack

3.4 Union query

Union query injection or in other word statement injection
attack. In which, attackers embed supplementary statements
into the original SQL query. Union query attack occurs by em-

bedding UNION keyword into unprotected parameter, as
shown in Fig 4. Resulting the database to return dataset which
is the union of result of original query with the result mali-
cious query.

Fig4: Union query attack

3.5 Stored procedure

In stored procedure attack, attackers concentrate on the stored
procedures which exists in the database system. Stored proce-
dures are near to the database engine thus it runs directly by
the database engine. It is an exploitable piece of code that re-
turns either true or false for the authorized or unauthorized
users. For SQLIA, attackers call the stored procedure and ap-
pend the command for instance the ―; SHUTDOWN; --" com-
mand to stop the database from functioning. The SQLI query
in the below figure, shows the stored procedure attack.

Fig5: Stored procedure attack

3.6 Inference

Inference attack allows the attackers to turn the nature of a
database or application. There are basically two types of infer-
ence attack.

3.6.1 Blind injection

SQLIA happens when programmers fail to remember to con-
ceal an error messages which cause data insecurity, this error
message aids SQLIA to harm the database by querying series
of logical inquiry through SQL statements. The below figure
demonstrates the blind injection attack.

Fig6: Blind injection attack

SELECT employee_password
FROM tblEmployee WHERE
Employee_ID = '2' OR

'2'='2' -- ' AND
employee_password

='he@sa';

SELECT Employee_ID FROM

tblEmployee
WHERE Employee_ID = 8
AND Employee_Password =

'abc';
DROP TABLE tblEmployee

SELECT * FROM
tblEmployee

WHERE Employee_ID =
'111' AND Employ-
ee_Password = 'abc'

AND CONVERT (int, ‘a’)

SELECT Student ID FROM
tblStudent UNION SELECT
Teacher ID FROM tbl-

Teacher

 SELECT employee_password

 SELECT employee_password

 SELECT employee_password

 EXEC PROC Test; SHUTDOWN;

SELECT password FROM

empTable WHERE username
= 'user1' AND 2=1 --

AND password = AND pin =
2 SELECT info FROM empT-

able WHERE username
='user1' AND = 2 -- AND

password =3

33

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

3.6.2 Timing attack

Timing attack enables attackers to accumulate information
from a database by observing timing procrastination in the
database's responses. This type of attack utilize if condition
statement to gain a time procrastination purpose such as
WAITFOR, which causes the database to postpone its re-
sponse by a specified time. The below figure displays timing
attack.

Fig7: Timing injection attack

3.7 Alternate encoding

In alternate encoding, attackers customize the injection query
using alternate encoding, such as hexadecimal, ASCII, and
Unicode. This approach permits attackers to escape from de-
veloper‘s filter and perform any sort of SQLIA. When this type
of attack couples with other attack techniques it could be
powerful, because it can target various layers in the applica-
tion so developers need to be familiar to all of them to supply
an effective defensive measure to avoid the alternate encoding
attacks. The SQL query, which is shown in Fig 8, describes the
alternate encoding attack.

Fig8: Alternate encoding attack

4 DEFINATION OF XSS

Cross Site Scripting is a client-site script injection attack which
attempts to run malicious code in the browser of the victim by
passing legal code in a web page or web application that can
be run later when the user actually lands on the web page or
web application infected by the malicious code. The web page
or web application acts like a vehicle to carry the malicious
script to the user‘s browser. These vehicles can be forums,
message boards, and web pages that allow comments.

XSS attacks are most common in JavaScript, primarily be-
cause JavaScript is recognized language for most browsers.

What can the attackers do with JavaScript?

1. Malicious JavaScript has access to all the contents of the
web page like access to the user‘s cookies. Cookies are
often utilized to save session tokens. If the attacker suc-
ceed to attain the user‘s session cookie then they can
impersonate that user, perform actions on behalf of the
user, and gain access to the user‘s sensitive data.

2. JavaScript can read the browser‘s DOM and make the
desired customizations to it.

3. JavaScript utilizes the XMLHttpRequest object to for-
ward HTTP requests with arbitrary content to arbitrary
destinations.

4. JavaScript in modern browsers utilizes HTML5 APIs.
For instance, it can access the user‘s webcam, location,
microphone, and even particular files from the user‘s
file system.

5 LITERATURE REVIEW

AMNESIA (Analysis and Monitoring for Neutralizing SQLIA)
technique was developed by W. G. J. Halfond et al [1] that
detects and prevents SQLIA at runtime based on two analysis
phases namely dynamic and static. In the static analysis it
generates types of query statements as a model and in dynam-
ic analysis phase it interprets all the queries against static
model before they are sent to the database.

SQL syntax-aware at web application layer to evaluate query
strings in web application server and negative impact at the
database layer to catch the untrusted data technique was de-
veloped by A. Alazab et al [2] but proved having network
overhead.

SAFELI is a tool presented by X.Fu et al [3], which identified
the SQL Injection attacks at compile time from the source
code. The drawback of this tool was it could not prevent tau-
tologies attack.

WASP (Web Application SQL Injection Protector) tool was
developed by W. G. J. Halfond et al [4] which was potent in
ceasing more than 12,000 attacks without generating any is-
sues in database layer. The limitation of this tool can be
founded by deploying web applications.

R-WASP (Real Time-Web Application SQL Injection Detector
and Preventer) tool was developed by M. H. A. S. P. Medhane
[5], which could cease all attacks potentially and detects
SQLIAs in real-time environment. The limitation of this tool is
required more practice to work efficiently.

Suitable Real Time Web Application SQL Injection Protector
(RT-WASP) tool was developed by N.S. Ali et al [6] to detect
SQL injection attacks in stored procedures. The drawbacks of
RT-WASP tool was that it did not detect the XSS attacks.

DECLARE @name VARCHAR

(500);
SELECT @name = empName

FROM tblemployee
IF(substring(@name,0,2))

> 0
Waitfor delay '0:0:8'

SELECT * FROM Accounts
WHERE acc_id ="AND

pin=1; exec
(char(0x23571324f2134124

wwa33))

34

IJSER

http://www.ijser.org/
https://www.acunetix.com/blog/articles/injection-attacks/

International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

Principle of dynamic query structure validation which was
done through analyzing query‘s semantics was proposed by S.
Manmadhan et al [7]. The main aim of this technique spot-
lighted on the particular type of attacks which was proved
vain later.

SecuriFly is a prevention tool for java developed by M. Martin
et al [8]. This tool is utilized to check string for malicious in-
formation and tried to fix it before passing to the database.
The limitation of this tool was complication in finding all the
sources of user input.

JDBC-Checker proposed by C. Gould et al [9], which is tech-
nique for statically analyzing the validity of dynamically gen-
erated SQL queries. The drawbacks of this technique was that
it could not identify general types of SQLIA because the at-
tackers usually writes queries accurately.

Dynamic Candidate Evaluations method was presented by P.
Bisht et al [10]. This technique separated out the query struc-
tures from each SQL query locations at the run-time. The
drawback of this technique was partially cease SQLIAs due to
the constraints on the fundamental method.

Swaddler method that analyzed the inner state of a web appli-
cation was proposed by Macro Cova et al [11]. Firstly, the
method interpreted the normal values for the application‘s
state variables. At the detection phase, the method control the
application execution to find abnormal states. The disad-
vantage of this method was that it partially identified SQLIAs.

DIWeDa, which was a mock-up that acted at the session level
to find malicious input in Web applications presented by A.
Roichman et al [12]. The drawback of this technique was that it
couldn‘t detect all types of SQLIA.

Positive Tainting and Syntax Aware Evaluation technique was
proposed by William G. Halfond et al [13]. In this technique it
basically differentiated the strings generated by the java and
the strings originated from external sources to identify the
trusted and untrusted data. If untrusted found then by syntax-
aware it prevented the data from being passed to the server.
The main drawback of this approach was initialization of
trusted strings by developers.

SQL Prevent, which was consist of a HTTP request interceptor
proposed by P.Grazie [14] The HTTP requests were stored into
the local storage. Then, SQL interceptor intervened the SQL
statements and moved them to the SQLIA detector. The main
problem of this approach was extra storage and processing
that effect performance state.

Automated approaches that were based on defensive pro-
gramming in which the inputs were filtered to avoid user
from inserting harmful keywords or characters proposed by
Mei Junjin [15], but proved unable to detect the stored proce-
dure and alternate encoding attacks.

SQLIPA that exploits hash value method to improve user au-
thentication mechanism was presented by S. Ali et al [16]. The
drawback of this technique was detecting merely Tautologies
attacks.

Usage of prepared Statement was proposed by Stephen
Thomas et al [17]. Utilizing JDBC for database connectivity,
the Prepared Statement on the spot liberate the special charac-
ters before implementing the query. The main drawback of
this approach was that it could not stop all types of SQLIA.

PDO (PHP Data Object) that defined a lightweight, persistent
interface for integrating with databases in PHP was suggested
by M. Sendiang et al [18], Parameterized Queries in PDO
could merely prohibit tautologies and union attacks.

Data validation and database lockdown proposed by M. Zabi
et al [19] in order to minimize the SQL injection in Microsoft
Internet information server. The main drawback of this ap-
proach was that it could only stop tautologies attacks.

Static and dynamic analysis was proposed by Lee, Inyong et al
[20] in which SQL query is cleansed during the runtime and
then the query was matched with the predefined SQL query.
This approach can abstain all types of SQL attacks except real-
time SQL attacks.

New methodology was proposed by Sailor Pratik et al [21] In
this approach the application was blocking the common key-
words such as union, special characters, delimiters and so on
with the impression that it will be comparatively better and
easy approach but it raised unauthentic alarm.

Runtime controlling approach progressed by Ramya Dharam
[22] was presented and evaluated to detect and prevent tau-
tologies attack in web applications. Their view was to not only
validate the client side code but also we have to validate the
server side code during runtime.

6 PROPOSED SOLUTION & IMPLEMENTATION

The SPWEPTLU (Stored Procedure with execution permission
to legitimate users) technique helps in detecting and prevent-
ing SQLI, XSS (Cross-Site Scripting) and other types of attacks
that can be performed via application penetration. This ap-
proach consists of the following steps.

1. Identify the organization business entities roles and

create separate user login for each roles.

35

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

Fig9:Logins
In figure 9, we identified the business entities roles such

student, teacher, president etc. And then created logins for
each mentioned entities under the security tab.

2. Write stored procedure.

 Fig 10: Database Procedure.

In figure 10 we write our procedure inside the database with
the below mentioned rules in order to lock security flaws and
prevent security attacks.

Rules of persistent and secure procedure writing in
SQL

I. Do not use concatenation even inside the stored pro-
cedure with parameters because it is also vulnerable
to security attacks though, sometimes the circum-
stances comes where we need concatenation of few
columns, in that case we can use the concat() function
which is secure way of concatenating the strings or
columns. Alternative way can be using local variables

inside the procedure.

Fig 11: Avoid concatenation.

CREATE PROC
sp_CheckStudentAppraisl_Record_
Exists
@Teacher_ID VARCHAR(50),
@Class_ID numeric(18,0),
@Section_ID numeric(18,0),
@Subject_ID numeric(18,0),
@Month_ID numeric(18,0),
@check_Record_Exists AS NUMER-
IC(18,0) out
AS
BEGIN

SET NOCOUNT ON;
-- Get the Current Ses-
sion
DECLARE @Session_ID AS
NUMERIC(18,0);

SELECT @Session_ID =
Session_ID FROM tblSes-
sion WHERE Year =
YEAR(GETDATE())
-- Get the Apprasial Re-
sult If Exists
DECLARE
@Exists_StudentApprisal
AS NUMERIC(18,0);
-- Select the data from
required tables
SE-
LECT@Exists_StudentAppri
sal =
COUNT(Apprisal)FROM
tblStudent_Performance
WHERE Enroll_ID IN (SE-
LECT
tblEnrollment.Enroll_ID
FROM tblEnrollment INNER
JOIN tblOfferedSubjects
ON
tblEnroll-
ment.Class_Subject_ID =
tblOfferedSub-
jects.Class_Subject_ID
INNER JOIN tblClass ON
tblOfferedSub-
jects.Class_ID =
tblClass.Class_ID INNER
JOIN tblStudent ON
tblEnrollment.Student_ID

= tblStudent.Student_ID

WHERE(tblEnrollment.Session_ID
= @Session_ID) AND

(tblClass.Class_ID = @Class_ID)
AND (tblEnrollment.Section_ID =

@Section_ID) AND
(tblOfferedSubjects.Subject_ID
= @Subject_ID) AND
(tblEnrollment.Teacher_ID =
@Teacher_ID) AND (tblStu-
dent.Student_Current_Status =
1)) AND Month_ID = @Month_ID
IF (@Exists_StudentApprisal =

0)
 BEGIN
 SET @check_Record_Exists = 0
 END
 ELSE IF
(@Exists_StudentApprisal !=0)
 BEGIN
 SET @check_Record_Exists = 1
 END
END

36

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

II. Follow suggestions stated by Microsoft in the best

practices article [23]. These suggestions may improve
procedure performance and security.

3. Assign procedure to proper role.

Fig 12: Grant procedure to role.

In figure 12 we grant execute only to those entities in an or-
ganization that mentioned procedure is part of their tasks or
roles for example the teacher at the school can only be able to
check students appraisal no other entities should be able to
check or access the students appraisal by performing injection
or any other sort of attacks so we grant the execute permission
to teacher only for checking students appraisal. In this case if
malicious user tries to inject any malicious statement, the da-
tabase engine will stop him/her. For example the teacher by-
passes the rules or penetrates into the system though the ap-
plication and injects some series of harmful statements or que-
ries, so the database will automatically not executing that
statements and generates error.

Fig 13: User perform procedure call that is
not part of his/her role + attack.

 Fig 14: Denial message from database.

Fig 15: User perform procedure call that is
part of his/her role + attack.

Fig 16: Procedure executed but the attack

denied by the database engine.

4. Finally, Calling procedure through application.

Fig 17: Calling procedure from app.

In figure 17, we include the proper connection according to
the currently login user‘s role then we simply call the proce-
dure with passing the arguments as a SQL parameters from
application and binding it with the parameters that we prede-
fined in SQL procedure in the database in order to treat every
single parameter as a variable not as a series of string as we do
in a normal query with concatenation or passing simple pa-
rameters to a query.

SPWEPTLU technique flow chart for preventing SQLIA

GRANT EXEC ON

sp_CheckStudentAppraisl_Record_
Exists To Teacher

EXEC

sp_CheckStudentAppraisl_Record_
Exists;

Shutdown;

Msg 229, Level 14, State 5,
Procedure sp_AddYear, Line 1

[Batch Start Line 0].
The EXECUTE permission was de-

nied on the object
'sp_AddYear', database 'Khalid

Bin Walid', schema 'dbo'.

DECLARE @result AS NUMER-

IC(18,0);
EX-

ECsp_CheckStudentAppraisl_Recor
d_Exists 'KBW-

2020010005',2,1,1,1,@result
out;print @result; DELETE FROM

tblStudent_Performance;

Msg 229, Level 14, State 5,

Line 3
The DELETE permission was de-
nied on the object 'tblStu-
dent_Performance', database
'Khalid Bin Walid', schema

'dbo'.

37

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

Fig 18: SPWEPTLU technique flow chart for preventing
SQLIA.

Cross site scripting attack prevention

The SPWEPTLU (Stored procedure with execution permission
to legitimate users) technique also helps to prevent cross site-
scripting attacks because it stores the user input as a variable
before passing it to the database and then it brings it back
from the database in a string form hence, it will be displayed
later in the DOM (document object model) as a string not as a
script to be implemented.

 Fig 19: XSS attack.

So this information will be stored as a text using stored
procedure and will be fetch back from database to the user
interface as text and will have no effect on script of the page
thus, it prevents from XSS attacks.

SPWEPTLU technique flow chart for preventing XSS

Fig 20: SPWEPTLU technique flow chart for preventing XSS.

Advantages of Proposed Solution

i). Security reinforcement: Restricting permissions in the

database helps security reinforcement.

ii). Concealed logic: In the proposed solution all the

logics implemented internally in the database are

hidden from the users.

iii). Denial of Arbitrary Actions: The users are not able to

perform any action arbitrarily because they don‘t

have any information related to any table or any col-

umn, in fact the users are just blindly executing as-

signed procedures that they are not informed of what

is written inside of it.

iv). Permission restriction: The users are not able to per-

form anything because they only have execution

permission to assigned procedures but they don‘t

have the permission to view the procedure definition

or to view any column in fact the users don‘t know

whether there exists any table, procedure, function or

view in the database or not.

v). Performance optimization: Stored procedures are exe-

cuted quickly because, they are near to the database

engine therefore we save time to access database cer-

tain times for different operations as we do in a nor-

mal query.

vi). Automatic denial of attacks: In the proposed solution,

the database itself cease the attacks when it encoun-

ters.

vii). Data accuracy and consistency: data can be manipu-

lated by accurate user and consistency exists in the

data because it cannot be changed by any attacks.

viii). XSS attacks prevention: the proposed solution pre-

vents from cross site scripting attacks because the Ja-

vaScript that the user passes to the server will be

stored as a parameter string thus, it cannot be opti-

mized by the attackers.

<SCRIPT>

Var adr = ‘evil.php?monster=’+
escape(document.cookie);

</SCRIPT>

38

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 12, Issue 1, January-2021
ISSN 2229-5518

IJSER © 2021
http://www.ijser.org

ix). Data security: As data are stored in such a way that

users are not aware of its existence therefore the users

would not be able to do anything. This approach

firms data security.

Implementable by all relational databases such as Or-
acle, MYSQL, SQLSERVER and so on.

7 CONCLUSION & FUTURE WORK

There are many vulnerable applications in today‘s world,
because the programmers mainly focus on user interfaces and
functionalities to produce a software irrespective of focusing
on security which is the core part of software development and
one of such security threat is SQL injection and XSS attacks
through which attackers penetrate into the system and harm
the organization. Thus some organizations use various
inaccurate techniques as discussed trivial by the researchers we
mentioned above such as parameterized query, wrongly usage
of stored procedure, using available software packages in the
market that claims to prevent SQLIA. Hence the paper
introduce optimal approach for not only detecting the SQL
injection and XSS attacks but also to prevent it from happening
by using the stored procedure with execute permission to
legitimate users technique that helps to prevent any sort of
application wise security attacks.

The future work for this paper is to enhance the capability of
this approach to detect and prevent SQLIA at application lev-
el.

REFERENCES

[1] W. G. J. Halfond and A. Orso, "Preventing SQL Injection Attacks

Using AMNESIA," Presented at the Proceedings of the 28th Interna-

tional Conference on Software Engineering (ICSE), ACM, Shanghai,

China.

[2] A. Alazab , A. Khresiat , ― New Strategy for Mitigating of SQL Injec-

tion Attack‖, International Journal of Computer Applications (IJCA),

Volume 154, paper No.11.

[3] X.Fu, X. Lu, B. Peltsverger, S. Chen, G. Southwestern, K. Qian, and S.

Polytechnic, ―A Static Analysis Framework for Detecting SQL Injec-

tion Vulnerabilities‖ 31st Annual International Computer Software

and Applications Conference (COMPSAC 2007), IEEE, ISSN: 0730-

3157, pages Number 1–8. , China.

[4] W. G. J. Halfond, A. Orso, and I. C. Society, ―WASP: Protecting Web

Applications Using Positive Tainting and SyntaxAware Evaluation‖,

IEEE Transactions on Software Engineering, volume. 34, Issue 1,

pages. 65–81, 2008.

[5] M. H. A. S. P. Medhane, ―R-WASP: Real Time-Web Application SQL

Injection Detector and Preventer‖, International Journal of Innovative

Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075,

Volume-2, Issue-5, pages. 327– 330.

[6] N.S. Ali, A. Shibghatullah, ―Protection Web Applications Using Real-

Time Technique to Detect Structured Query Language Injection At-

tacks‖, International Journal of Computer Applications (IJCA), Vol-

ume 149, paperNo:6.

[7] S. Manmadhan , Manesh T. , ―A Method of detecting SQL Injection

Attack to Secure Web Applications‖, International Journal of Distrib-

uted and Parallel Systems (IJDPS) ,Volume.3, Issue.6.

[8] M. Martin, B. Livshits, and M. S. Lam., ―Finding Application Errors

and Security Flaws Using PQL: A Program Query Language‖ ACM

SIGPLAN Notices, Volume: 40, Issue: 10 Pages: 365-383.

[9] C. Gould, Z. Su, and P. Devanbu. JDBC Checker, ―A Static Analysis

Tool for SQL/JDBC Applications‖, in Proceedings of the 26th Inter-

national Conference on Software Engineering (ICSE04) Formal De-

mos, ACM, ISBN: 0-7695-2163-0, pages 697– 698.

[10] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan, ―CANDID:

Dynamic Candidate Evaluations for Automatic Prevention of SQL In-

jection Attacks‖, ACM Transaction on Information System Security,

pages.1–39.
[11] Macro Cova, Davide Balzarotti.‖ Swaddler: An Approach for the

Anomaly-based Detection of State Violations in Web Applications‖,
In Proceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID), pages: 63–86.

[12] A. Roichman, E. Gudes, ―DIWeDa - Detecting Intrusions in Web
Databases‖. In Proceeding of the 22nd Annual IFIP WG 11.3 Working
Conference on Data and Applications Security, Springer, volume.
5094, pages. 313–329, Heidelberg.

[13] William G. Halfond, Alessandro Orso, "Using Positive Tainting and
Syntax Aware Evaluation to Counter SQL Injection Attacks", 14th
ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, ACM. Pages: 175 – 185.

[14] P.Grazie., PhD, ―SQL Prevent Thesis‖, University of British Colum-
bia (UBC) Vancouver, Canada.

[15] Mei Junjin, ―An Approach for SQL Injection Vulnerability Detection‖
Proceedings of the 2009 Sixth International Conference on Infor-
mation Technology: New Generations, IEEE Computer Society, Las
Vegas, Pages 1411-1414.

[16] S. Ali, SK. Shahzad and H. Javed, ―SQLIPA: An Authentication
Mechanism against SQL Injection‖, European Journal of Scientific
Research, Volume.38, Number.4, pages: 604-611.

[17] Stephen Thomas, Laurie Williams, ―Using Automated Fix Generation
to Secure SQL Statements‖, Proceedings of the Third International
Workshop on Software Engineering for Secure Systems (SESS '07),
page 9.

[18] M. Sendiang, A. Polii, J. Mappadang, ―Minimization of SQL Injection
in Scheduling Application Development‖, International Conference
on Knowledge Creation and Intelligent Computing (KCIC), IEEE, In-
donesia.

[19] M. Zabi, M.Joseph ―Minimization of SQL Injection‖, International
Conference of Technology Sight, IEEE, Saudi.

[20] Lee, Inyong, Soonki Jeong, Sangsoo Yeo, and Jongsub Moon. "A
Novel Method for SQL Injection Attack Detection based on Remov-
ing SQL Query Attribute Values." Mathematical and Computer
Modelling, Volume 55, Issues 1–2, Pages 58–68.

[21] Pratik H Sailor, Prof. Jaydeep Gheewala. "Detection and Prevention
of SQL Injection Attacks", International Journal of Engineering De-
velopment and Research (IJEDR), ISSN: 2321-9939, Vol.2, Available:
http://www.ijedr.org/papers/IJEDR1402215.pdf.

[22] ―Runtime Monitors for Tautology based SQL Injection Attacks‖,
Ramya Dharam, Sajjan G.Shiva, ―International Journal of Cyber Se-
curity and Digital Forensics (IJCSDF).

[23] ―Microsoft Suggestion for Proper Procedure Writing‖, Available:
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-
procedure-transact-sql?view=sql-server-ver15#see-also

39

IJSER

http://www.ijser.org/
http://www.ijedr.org/papers/IJEDR1402215.pdf
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-server-ver15#see-also
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-procedure-transact-sql?view=sql-server-ver15#see-also

